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We study transfer of a single-electron through a quantum ring capacitively coupled to the charged quantum
dot placed in its center. For this purpose we solve the time-dependent Schrödinger equation for the pair of
particles: the electron traveling through the ring and the other carrier confined within the quantum dot. The
correlation effects due to the interaction between the charge carriers are described in a numerically exact
manner. We find that the amplitude of Aharonov-Bohm oscillations of the transfer probability is significantly
affected by the presence of the dot-confined carrier. In particular the Coulomb correlation leads to inelastic
scattering. When the inelastic scattering is strong the transmission of electron through the ring is not com-
pletely blocked for �n+1 /2� magnetic flux quanta.
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I. INTRODUCTION

Semiconductor quantum rings allow for observation of
the electron self-interference. When electron traverses the
ring threaded by magnetic field it is subject to a constructive
or a destructive interference what manifests itself as conduc-
tance oscillations. This effect as predicted by Aharonov and
Bohm1 was observed in many experiments with quantum
rings.2 Manipulation of electron wave function phase in both
arms of the quantum ring allows to obtain strong or weak
coupling between the ring and the leads by tuning the mag-
netic field. Recently, besides the most intensively examined
two-terminal open quantum rings3–5 this kind of coupling
was experimentally tested in three-terminal6,7 as well as in
four-terminal quantum rings.8 The current oscillations are
highly sensitive to decoherence resulting from interaction
with environment such as electron-phonon or electron-
electron interactions. Effect of electrostatic interaction on
magnetotransport was observed experimentally for ring with
quantum dot placed in one of its arms,9 for ring capacitively
coupled to the quantum dot placed beside it10,11 as well as for
rings working in Coulomb blockade regime and confining
from few12 to several hundreds electrons.13,14 The weak lo-
calization theory predicts that the phase coherence time
against the effects of the electron-electron interaction ap-
proaches infinity for zero temperature.15 However, besides
the decoherence, which is suppressed in low temperature, the
electrostatic interaction is also responsible for existence of
spatial correlations between charged particles. We may di-
vide correlations induced by electrostatic interaction in a
crude way in two types: �i� the Coulomb correlation which
introduces dependence of mutual particle positions due to
repulsive or attractive interaction and �ii� the Pauli correla-
tion which arises directly from the Pauli exclusion principle.
An extremely strong effect of Coulomb correlation on mag-
netotransport in quantum ring was experimentally observed
by Mühle et al.16 Measurements of magnetic field depen-
dence of conductance for system of two concentric capaci-
tively coupled quantum rings revealed two-period oscilla-
tions which authors ascribed to existence of the Aharonov-

Bohm �throughout this paper we use AB to denote the
Aharonov-Bohm effect� effects in the inner and in the exter-
nal ring. This experiment explicitly proves that Coulomb cor-
relation may greatly affect electron transport in quantum ring
even in low temperatures when the decoherence due to
electron-electron scattering vanishes.

In this paper we study the single-electron transport
through a two-terminal quantum ring in external magnetic
field taking into account the Coulomb interaction with an-
other charge carrier. The second particle �electron or hole�
is confined within the dot settled in the center of the ring.
We assume that the barrier between the ring and the dot is
thick enough to neglect the tunnel coupling. For that confine-
ment potential model, we perform time evolution of two-
particle wave function by solving suitable time-dependent
Schrödinger equation. We observe AB oscillations in the
electron transfer probability. We also find that the Coulomb
correlation modifies the AB effect in the following way: �i�
the maxima of transmission probability grow when trans-
ferred electron is attracted by the charged dot while repulsive
interaction lowers them and �ii� the probability of electron
transfer may grow for �n+1 /2� magnetic flux quanta pierc-
ing the ring when the interaction is strong enough to excite
the carrier that is confined in the inner dot. In the latter case,
electron transfers part of its energy to the dot. We find that
the energy transfer depends on magnetic field due to both the
AB effect and the Lorentz force. The electrostatic interaction
causes also positive feedback between transferred electron
and the second particle. Even small oscillation of charge in
the dot can perturb potential felt by transferred electron
which may change the phase of the electron wave function in
both ring arms. Finally, an inelastic scattering of electron on
oscillating Coulomb potential leads to suppression of AB
effect.

The paper is organized in the following way. We define
the confinement potential of the considered system and
present our theoretical model in Sec. II. Effect of the repul-
sive as well as effect of the attractive interaction on trans-
mission probability are presented in Sec. III B and in Sec.
III C, respectively. Inelastic scattering of the transferred elec-
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tron on Coulomb potential in two-terminal quantum ring is
analyzed in Sec. IV. Discussion and conclusions are provided
in Sec. V.

II. THEORY

Our confinement potential model consists of quantum ring
connected to the left and to the right leads of finite length
and a closed circular quantum dot placed in the center of the
ring. Tunneling between the ring and the dot is neglected due
to wide barrier so that the first particle �electron� can only
move in the leads and in the ring while the second �electron
or hole� cannot leave the dot. The whole system is put in
homogeneous magnetic field which is perpendicular to the
quantum ring plane. The confinement potential is schemati-
cally depicted on Fig. 1. We assume that the confinement is
much stronger in the growth �z� direction than that in �x-y�
plane of the ring. Both particles occupy a frozen ground state
of the quantization in the growth direction. System of two
interacting particles can be described within an effective
two-dimensional model. We define the confinement potential
in the ring �Vr�, in the leads �Vl� and in the dot �Vd� as

Vr�r� = Ve exp�−
��r − r0� − rr�p

�r
p � , �1�

Vl�r� = Ve exp�−
�y�p

�r
p � , �2�

Vd�r� = Ve�h� exp�−
�r − r0�p

�d
p � . �3�

In the above equations Ve�h� is the maximal depth of the
potential for electron �hole�, r0 is the center position of the
ring and the dot, �d is the radius of the dot, �r is the width of
the ring arms and both leads as well, rr is the radius of the
ring. The value of parameter p defines the smoothness of the
quantum dot wall. In the calculation we use the following
values: Ve=−200 meV, Vh=−140 meV, r0= �3.195 �m,0�,
�d=55 nm, p=8, �r=25 nm, and rr=130 nm. The length
of the left lead is equal to 3 �m while the length of the right
lead is 3.2 �m.

The main aim of this work is the investigation of the role
of Coulomb correlation in the single-electron transport
through the ring. For this purpose we perform the time evo-

lution of two-particle wave function which fulfills the
Schrödinger equation

i�
�

�t
���r1,r2,t�� = Ĥ���r1,r2,t�� , �4�

where the two-particle Hamiltonian is defined as

Ĥ = ĥ1 + ĥ2 +
q1q2

4���0r12
. �5�

The Hamiltonians ĥ1 and ĥ2 are the single-particle energy
operators. The third term on the right hand side of above
equation describes the electrostatic interaction between the
particles which introduces spatial correlations of their mutual
positions. We use single-particle Hamiltonians in the follow-
ing form:

ĥi =
�p̂i − qiA�ri��2

2mi
� + Vo�d��ri� , �6�

where p̂i=−i��ri
is the particle momentum operator, mi

� is
effective mass, qi is the charge of the particle, A�r� is a
vector potential, and Vd�ri� is a confinement potential of the
dot while Vo�ri�=Vr�ri�+Vl�ri� is a sum of confinement po-
tential of the ring and the leads. Since the tunnel coupling
between the ring and the dot is neglected in our theoretical
model, the particles confined in spatially separated regions
cannot exchange their spins. In other words, the exchange
interaction between the electron in the ring and the particle
confined in the dot exactly vanishes. Therefore, all the effects
due to the presence of the charged dot inside the ring are
only result from the Coulomb coupling. For non-negligible
tunnel coupling between the ring and the dot the single-
particle wave functions of the ring and the dot would over-
lap. In this case the exchange correlation would lead to a
dependence of the transmission probability on the relative
spin arrangements. Moreover, for nonzero overlap between
the ring and the dot wave functions the particle confined in
the dot might be able to tunnel out to the ring.

The Hamiltonian �5� does not depend on the spin coordi-
nates. According to the superposition principle, we expand
the correlated wave function of two spinless particles as lin-
ear combination

��r1,r2,t� = 	
i

M

ci�t��i�r1,r2� , �7�

where ci�t� are the time-dependent coefficients and M is the
size of the two-particle wave functions base. The elements �i
are expressed as products of single-particle wave functions

�i�r1,r2� = �k�i��r1�	m�i��r2� , �8�

where every index i corresponds to a particular combination
of indices k and m. The k index numbers the states of the first
particle which moves in the ring and in the leads while m
numbers the states of the second particle in the quantum dot.
In order to find the wave functions �k and 	m we first ex-
press them as linear combinations of centered Gaussian func-
tions. For example, the k-th quantum dot state can be written
as

{ ϕ(1)}
{ ϕ(2)}

{ ϕ(3)}

0
xr

xl
xmax=6.6µmx0=3.195µm

x

y

FIG. 1. Confinement potential of two-terminal quantum ring
with quantum dot placed inside. Arrows indicate spatial limits of
three single-electron wave functions bases used for simulation of
electron wave packet in the leads and in the ring �see text below�.
Labels xl and xr mark the left and the right limits of the ring.
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	k�r� = 	
i

ai
k exp�−

�r − ri�2

2�g
2 −

iqB

2�
�x − xi�yi� , �9�

where ai
k are the linear combination coefficients, ri= �xi ,yi�

are position vectors of Gaussian centers, B is the value of
magnetic field and q is the charge of the particle �+e for the
hole and −e for the electron�. The nodes ri form a two-
dimensional square mesh with the distance 
g=
2�g be-
tween neighboring nodes. In next step, we diagonalize the
single-particle Hamiltonians �6� in the Gaussian functions
base �9� in order to find the coefficients ai

k. In calculations
we used material parameters for GaAs, i.e., effective electron
mass me

�=0.067m0, effective heavy hole mass mh
�=0.5m0 �m0

is bare electron mass� and dielectric constant �=12.9. We
used nonsymmetric gauge for the vector potential A�r�=B�
−y ,0 ,0� for which the magnetic field vector B� is parallel to
the z axis �perpendicular to the ring plane�. The value of
parameter �g was estimated variationally and was equal to
�g=5.16 nm.

We determine the single-particle states in the dot by di-
agonalizing the single-particle Hamiltonian with confinement
potential given by Eq. �3�. Therefore, the wave functions 	m
were determined only in the quantum dot and in the close
surroundings, i.e., in the barrier that separates the dot from
the ring. Due to extremely large span of the external sub-
system �leads and ring� we divided it into three overlapping
parts. In every spatial parts another single-electron wave
functions base is introduced, i.e., ���1��, ���2��, and ���3�� as
shown on Fig. 1. We find elements of these three bases in a
similar way to the one applied for the quantum dot, i.e.,
diagonalizing the Hamiltonian �6� for confinement potential
Vo=Vr+Vl. For the preparation of the basis we assumed a
different external potential Vo in the three considered re-
gions. In order to determine the basis elements in a region
we modified the potential assuming Vo=0 outside this region
in order to spatially limit the basis wave functions for each
region. As the first second and third region �bases ���1��,
���2��, and ���3��� we take 0�x�2865 nm, 2765 nm�x
�3625 nm, and 3525 nm�x�6600 nm, respectively �see
Fig. 1�.

Wave functions ���1�� and ���3�� are defined in the left
�region 1� and in the right �region 3� leads, respectively, for
the distance larger than 200 nm from an outermost parts of
the ring �parameters xl and xr on Fig. 1�. In a similar way, the
elements ���2�� are defined in the second region which covers
the ring �without a dot� with parts of both leads to the dis-
tance of 300 nm from the ring. The ranges of these three
regions are schematically marked on a Fig. 1. Notice that the
elements of two adjacent basis overlap, e.g., the first with the
second as well as the second with the third on the length
equal to 100 nm. We carefully checked that these connec-
tions do not perturb motion of electron in both channels.17

For construction of the two-particle wave function �8�, we
use the lowest energy states obtained from single-particle
Hamiltonian diagonalization. In calculations we use Nd=20
dot states and N1=140, N2=60 and N3=150 states for bases
���1��, ���2��, and ���3��, respectively.

In the Schrödinger Eq. �4� we substitute for ���r1 ,r2 , t��
its expansion �7� and next we multiply both sides of resulting

equation by �k�r1 ,r2��. We obtain the following matrix
equation:

i�Sċ = Hc , �10�

where S is the overlap matrix of two-particle wave functions
basis elements �8� defined as Skm= �k ��m� while H is the
matrix of two-particle Hamiltonian �5� with elements Hkm

= �k�Ĥ��m�. Details of calculations of the matrix elements of
electrostatic interaction are given in previous work.18 Deter-
mination of these matrix elements are very time consuming
and therefore we were forced to limit the range of Coulomb
interaction in the system. We assume the transferred electron
does not interact with the particle confined in the dot if the
distance between its position and the dot center exceeds 390
nm. In other words, when electron moves toward the ring it
may be partly reflected from a smooth potential step of
height 
V=0.28 meV. The presence of this potential step
does not influence the electron transfer probability since the
original kinetic energy of electron on Fermi surface �EF
=1.42 meV�, considered in this work, is several times
larger.19

The Eq. �10� can be numerically solved by using an itera-
tive method, similarly as was shown in work20 for time evo-
lution of electron wave packet in a two-terminal quantum
ring. Notice however, that every iterative method requires
very large number of matrix-vector multiplications so that to
retain the stability and to keep the numerical errors as small
as possible. Since, the sizes of matrices H and S are equal to
7 000, the use of iterative schema in our two-particle prob-
lem would be inefficient. Instead, we performed the time
evolution of two-particle wave function in another nonitera-
tive way. For this purpose, we first diagonalized the two-
particle Hamiltonian �5� and put all obtained eigenvectors in
columns of the new matrix U �of the same size as H�. Next,
we use this U matrix to perform the unitary transformation of
Eq. �10�

i��U+SU��U+ċ� = �U+HU��U+c� . �11�

Let us notice that U+SU=I where I is the unity matrix and
U+HU=D where D is diagonal matrix with eigenvalues of
energy operator �5� on a diagonal. Due to the diagonal form
of both matrices, the system of M =7000 coupled equations
given by Eq. �10� transforms into system of M decoupled
differential equations

i�
�bk

�t
= Dkkbk, �12�

where b=U+c, with solutions

bk�t� = bk�t = 0�exp�−
iDkkt

�
� . �13�

Obviously in order to obtain solution for original problem
defined by Eq. �10�, i.e., to obtain values of coefficients ck,
one performs a backward transformation c=Ub. We made
the diagonalization of H numerically. Therefore, in order to
estimate the numerical errors which may appear due to per-
forming the unitary transformation, we always checked the
energy and the norm conservation for two-particle wave
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function. The relative errors do not exceed 10−6.
For t=0 we use the following form for the initial two-

particle wave function:

�s = ��r1,r2,t = 0� = �0�r1�eik0x1	0�r2� . �14�

Wave function 	0�r2� describes the particle �electron or hole�
confined in the dot in the ground state while �0�r1�eik0x1 is
the wave function of the electron moving in the left channel
toward the ring with the average momentum depending on k0
value. We determined �0�r1� by diagonalizing the Hamil-
tonian �6� in the centered Gaussian functions base �9� with
the confinement potential

Vs�r� = Vl�r� +
me

��2

2
�x − xs�2, �15�

where xs is the center position of harmonic oscillator in the
left channel. It was situated in the distance of 995 nm from
the center of the ring �dot�. The strength of the harmonic
oscillator depends on the oscillator length �le�, i.e., ��
=�2 /me

� / le
2. In calculations we used le=50 nm. Such way of

determination of �0 inherently includes the magnetic trans-
lation phase change. For t=0 we give the electron in the left
channel momentum �k0 with k0=0.05 /nm which corre-
sponds to the average energy on the Fermi surface �EF
=1.42 meV� in the two-dimensional electron gas with
density20 n=41010 /cm2. The choice of initial conditions,
i.e., values of parameters such as xs or le is quite arbitrary. In
Sec. III C we will shortly comment the results obtained also
for other sets of initial parameters.

III. RESULTS

Below we denote by PA, PB, and PC the probabilities of
finding the transferred electron in the left channel, within the
ring and in the right channel, respectively. For these quanti-
ties we defined auxiliary operators

P̂A = ��xl − x1� , �16�

P̂B = ��x1 − xl� + ��xr − x1� − 1, �17�

P̂C = ��x1 − xr� . �18�

In the above definitions ��x� is the Heaviside function while
xl=3040 nm and xr=3350 nm are the left and the right lim-
its of the ring in x direction, respectively, as shown on Fig. 1.
Each Pi can be simply computed at any time as expectation

value of specific operator P̂i, i.e., Pi�t�
= ��r1 ,r2 , t��P̂i���r1 ,r2 , t�� �for i=A ,B ,C�. We treat PC
and PA are lower bounds for probability of electron transfer
and backscattering, respectively, since the ring is not com-
pletely empty at the end of simulations. A part �less than 5%�
of the packet always stays inside the ring since the sizes of
the channels are limited.

A. Electron transfer without interaction

We start the presentation by the case when the transferred
electron does not interact with the charged dot. These results

will serve as the reference point for the main calculation
where the interactions are included. Electrostatic interaction
was turned off simply by extracting its matrix elements from
two-particle Hamiltonian �10�. The probability distributions
PA, PB, and PC as functions of time and magnetic field for
this case are depicted on Fig. 2.

All probabilities strongly oscillate with magnetic field
which is a typical manifestation of Aharonov-Bohm effect.
Period of these oscillations is 
B=78 mT. This value is
close to 
BT=77.98 mT obtained for the one-dimensional
ring from formula


BT =
h

e

1

�r2 �19�

for ring radius r=130 nm. Especially the most intensive AB
pattern is visible for the probability of electron transfer �see
Fig. 2�c��, i.e., distinct maxima for multiple integers of mag-
netic field flux quanta �	n=n�h /e� with n=0,1 ,2 , . . .� and
blockades of electron transfer in the half way between adja-
cent maxima. The presented time-magnetic field characteris-
tics of probabilities clearly show the dynamics of wave
packet motion. For the first 6 ps the most energetic part of
the electron wave packet reaches the left entrance to the ring
but then it takes it about 4 ps to get through the ring to the
second junction. This is visible as a large growth of PC value
on Fig. 2�c� for t�10 ps. One can also see that the electron
wave packet leaves the ring more quickly when the PC is
close to its maximum rather than for its minimum. Besides
the AB effect, probabilities of finding the electron in the left
and in the right leads depend also on magnetic field due to
the Lorentz force.20 In order to show magnetic field effect on
electron transport, we made the cross sections of PA, PB, and
PC distributions shown on Fig. 2 for t=50 ps. These cross
sections are shown on Fig. 3�a�. One may notice that the
electron transfer through the ring is completely blocked due
to AB effect only in low magnetic field. For example, for
B=39 mT probability of an electron transfer is of the order
10−4. However, for high magnetic field, the probability of
electron transfer does not drop to zero at all. It means that the
AB effect is perturbed by the Lorentz force. Due to the nar-
row cross sections of leads and arms of the ring there are no
significant changes in the maxima of transmission probabil-
ity as it was theoretically predicted20 and experimentally
observed6 for rings with wider arms.

Figure 3�a� shows also comparison of results obtained for
100 nm and for 200 nm wide overlap regions. Probabilities
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FIG. 2. �Color online� Probabilities PA, PB, and PC as functions
of time and magnetic field. Coulomb interaction between trans-
ferred electron and charged dot is neglected.
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PA and PC are the same what proves that electron may
smoothly move between neighboring regions without reflec-
tion. In order to check the influence of initial conditions on
the probability of electron transfer we made additional simu-
lations for several different values of initial parameters that
is for k0, le, and xs. Results are presented on Fig. 3�b�. We see
that the probability of electron transfer strongly depends on
the spatial spread of original wave packet and its initial mo-
mentum rather than its distance from the ring. When initial
wave packet becomes wider �value of le is larger� then the
probability of electron transfer grows even by several per-
cents. On the other hand, transmission probability is less
susceptible for change in the distance between initial posi-
tion of wave packet and center position of the ring. Results
obtained for 1.7 and 1 �m are very much the same, i.e., the
difference is only about 1%.

B. Effect of repulsive interaction on electron transport

In order to investigate the correlation effects which are
due to the repulsive interaction, we put single electron into
the dot and turned on the interaction in the system. Trans-
ferred electron feels a growing repulsive electrostatic poten-
tial as it approaches the ring. Probabilities PA, PB, and PC as
functions of evolution time and magnetic field obtained for
this two-electron system are shown in Fig. 4. Comparison of
probabilities distributions obtained for electron subject to the
repulsive interaction �Figs. 4�a�–4�c�� with those obtained for
noninteracting electrons �Fig. 2� allows us to distinguish sev-
eral differences between these two cases. Maxima of trans-
mission probability are decreased for repulsive interaction in
relation to the previous case. Consequently, the interaction is
also responsible for the growth of probability of finding the
electron in left lead PA �cf. Figures 2�a� and 4�a�� and also
for faster electron wave packet leakage from the ring for t
�40 ps. However, the interaction does not change the pe-
riod of AB oscillation. The probabilities PC shown on Fig.
2�c� and on Fig. 4�c� change with the same frequency. For
quantitative analysis of interaction influence on PA, PB, and
PC we have made the cross sections of probabilities distribu-
tions for t=50 ps. These cross sections are presented on Fig.
5�a�.

Comparison of PC cross sections shown on Figs. 3�a� and
5�a� reveals that repulsive interaction is responsible for about
10% decrease in transmission probability. It results from the
fact that when electron approaches the ring, it simultaneously
climbs on a growing slope of the Coulomb potential of the
second electron and converts part of its kinetic energy into
potential energy. Therefore, the electron wave packet enters
the ring with lower average wave vector k than its initial
value k0. Since the probability of electron transfer strongly
depends on the k value �see Fig. 3�b��, the lower average k
value bring the transmission probability down. Such situa-
tion is clearly visible on Fig. 3�b� for k0�kF. In order to
check this hypothesis we performed additional time evolu-
tion of two-electron wave function giving the transferred
electron higher initial momentum just enough to overcome
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FIG. 3. �Color online� a� Probabilities PA �black�, PB �red�, and
PC �blue� as functions of magnetic field for t=50 ps. Elements of
bases ��1� and ��2� as well as elements of ��2� and ��3� overlap on
the length of 100 nm �solid lines� and 200 nm �dots�. b� Probability
of electron transfer as a function of the initial wave vector k0 for
several combinations of parameters le and xs defining the shape of
single-electron wave packet and its center position for t=0. In both
cases, the electron does not interact with charged dot.

P
A

0

0.1

0.2

0.3

0.4

0.5

e-
e

B
[T

]

P
B

P
C

0

0.1

0.2

0.3

0.4

0.5a b c

0 10 20 30 40
t [ps]

0

0.1

0.2

0.3

0.4

e-
h

B
[T

]

0 10 20 30 40
t [ps]

0 10 20 30 40 50
t [ps]

0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

1.0

P

d e f

FIG. 4. �Color online� Probabilities PA, PB, and PC as functions
of time and magnetic field for the case when the transferred electron
electrostatically interacts with charged dot. The figures �a–c� were
obtained for repulsive interaction �electron confined in the dot�
while figures �d–f� for attractive interaction �heavy hole confined in
the dot�.
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FIG. 5. �Color online� Probabilities PA �black line�, PB �red
line�, and PC �blue line� as functions of magnetic field for t
=50 ps and for �a� k0=0.05 nm−1 and �b� k0=0.063 nm−1. The
transferred electron interacts electrostatically with negatively
charged dot. �c� Energy spectrum of single electron confined in the
dot. �d� Interaction energies for the lowest-energy states of two
electrons confined in closed quantum ring–quantum dot system.
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the repulsive interaction �see Fig. 5�b��. We assumed 0.86
meV as average value of interaction energy what gives initial
momentum k0=0.063 nm−1 and corresponds to EF
=2.28 meV. Probabilities PA, PB, and PC as functions of
magnetic field for this case for t=50 ps are presented on Fig.
5�b�. We notice that this picture is almost identical with re-
sults obtained for electron transport without interaction �cf.
Figures 3�a� and 5�b��. As one may notice, the repulsive in-
teraction does not change the frequency of AB oscillations
�cf. Fig. 3�a� and 5�b� with Fig. 5�a��. This results from the
fact that we did not include the term describing interaction
between the magnetic dipole moments in the two-particle
Hamiltonian �5�. In addition, the electrostatic potential origi-
nated from charged dot is too weak to induce the electron
density redistribution along the ring radius and thus do not
change the effective ring radius �see Eq. �19��. In order to get
a deeper insight into the dynamics of the two-electron wave
packet we have calculated the total two-electron probability
densities and the current densities. Results obtained for t
=8,10,14,20 ps are shown on Fig. 6. When the magnetic
field is absent in the system, the total electronic density as
well as the current remain symmetrical relative to y→−y
reflection during the whole time evolution. Obviously, it re-
sults from the fact that the electrostatic interaction term in
two-particle Hamiltonian �5� preserves this symmetry and
thus does not change the symmetry of the two-particle wave
function. A detailed analysis of the currents for B=0 reveals
that the electrostatic interaction does not induce current in-
side a dot as one at first may expect. When electron ap-
proaches the ring, both electrons repel each other into oppo-
site directions. As we do not see any current induced in the
dot for B=0, we can state that the electron confined in the
dot does not react to the presence of the first electron. This
lack of reaction of the second electron stems from the fact
that the interaction is small in comparison with the lowest
single-electron energy excitations in the dot. We see in Fig.
5�d� that the value of interaction energy between two elec-
trons confined in closed quantum ring–quantum dot structure
is about 0.86 meV. On the other hand, the energy spacings
between the first two excited states and the ground state in
quantum dot confining single electron �see Fig. 5�c�� are

equal to 3.1 meV for B=0. The interaction energy is more
than three times smaller than even the lowest two single-
electron energy excitations and therefore can hardly mix the
quantum dot states. Since the transferred electron cannot ex-
cite the second electron, there is no energy transfer to the
dot. Transferred electron scatters only elastically on the stati-
cal repulsive potential created in the leads and in the ring by
second electron which is confined in the inner dot. The mag-
netic field breaks the symmetry of the confinement potential
and favors an upper arm. The larger part of electron wave
packet is directed to this arm �see Fig. 6 for B=0.039 T and
B=0.429 T�. Let us notice that the current in the dot is more
intensive for stronger magnetic field. Since the electrostatic
interaction is too weak to induce it, only the external mag-
netic field may be responsible for its existence. We explain it
by analyzing the matrix elements of probability current

jkm =
i�

2m�
�	m � 	k

� − 	k
� � 	m� −

q

m�
A	k

�	m. �20�

The first component on the right hand side in Eq. �20� is the
paramagnetic part of current while the second component is
diamagnetic. Now, if we notice that electron occupies exclu-
sively the ground state of s symmetry for B=0 we see that
the paramagnetic current completely disappears.21 One may
notice on Fig. 5�c� that even for B=0.5T the energy spacings
between the first excited state and the ground state �E1−E0
=2.7 meV� are still much larger than interaction energy.
Since the interaction is not able to mix the dot states, the
electron confined in the dot still occupies the ground state
and there is no paramagnetic contribution to the current even
in high magnetic field. Since the diamagnetic current de-
pends on product of probability density and magnetic field,
its contribution increases for stronger magnetic field what is
clearly visible when comparing dot currents depicted in the
fourth and in the sixth columns on Fig. 6.

C. Effect of attractive interaction on electron transport

In the preceding section we showed that the repulsive
interaction is responsible for decrease in probability of elec-
tron transfer through the ring. When electron approaches the
ring and negatively charged dot, it is scattered elastically on
a static potential. A part of the electron kinetic energy is
converted into the potential energy. The average momentum
of the packet is decreased, which leads �Fig. 3�b�� to a de-
crease in probability of electron transfer. Let us notice that
this mechanism may presumably lead to an increase in the
transmission probability provided that the electron is at-
tracted by the positively charged dot. In order to check this
conjecture we put the heavy hole in the dot and made time
evolution of wave function for this electron-hole system.
Probabilities PA, PB, and PC distributions as functions of
evolution time and magnetic field obtained for this case are
shown on Figs. 4�d�–4�f�. Comparison of the results obtained
for the repulsive interaction �Figs. 4�a�–4�c�� with those ob-
tained for the attractive one �Figs. 4�d�–4�f�� shows that the
probability of electron transfer through the ring is indeed
larger in the latter case. Moreover, when the transferred elec-
tron feels the presence of the positively charged dot it spends
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FIG. 6. �Color online� Two-electron probability density �odd
columns� and current density �even columns� calculated for t=8,
10, 14, 20 ps. The red color indicates the current flowing to the right
lead while the blue color marks the current flowing to the left.
Intensity of the colors is proportional to the amplitude of current.
The color scales for two lowest rows are enhanced by the multipli-
ers which are shown in top right corners.

T. CHWIEJ AND K. KUTORASIŃSKI PHYSICAL REVIEW B 81, 165321 �2010�

165321-6



less time in the ring. Attractive interaction leads to an in-
crease in the packet average momentum and velocity. There-
fore, the electron traverses the ring in shorter time than in the
case when it is repelled by negatively charged dot. Cross
sections of those probabilities distributions depicted in Fig.
7�a� indicate that the AB oscillations are independent of elec-
trostatic interaction. Probabilities PA and PC oscillate with
the same frequency as those shown on Fig. 5�a� obtained for
repulsive interaction, the period of AB oscillation is still
equal to 
B=78 mT. The electrostatic interaction does not
change the frequency of AB oscillations but may signifi-
cantly influence the electron transfer probability provided
that the confinement along the ring radius is strong. The
change of character of electrostatic interaction from repul-
sive to attractive makes the maxima of probability of elec-
tron transfer grow by more than 20%. Repulsive or attractive
potential changes the wave vector distribution in the electron
wave packet due to its deceleration or acceleration by the
electrostatic potential. As it is clearly visible on Fig. 3�b�
such a change in the average value of electron wave vector
should influence, to a large extent, the probability of the
electron transfer. However, when the electron interacts with a
positively charged dot, the minima of the transfer probability
at half flux quanta become shallower. For example, for B
=39 mT, transmission probability falls only to 8.4% while
the electron transfer is completely blocked when the electron
does not interact with particle confined in a dot �Fig. 3�a�� or
is repelled by a negatively charged dot �Fig. 5�a��. Since the
Lorentz force is negligible for low magnetic field, this AB
blockade weakness stems only from the interaction of elec-
tron wave packet with the positively charged dot. Figure 7�b�
shows probabilities obtained for attractive and repulsive in-
teraction between the transferred electron and the second
particle which is frozen in the ground state in the dot. Elec-
tron or hole confined in the dot cannot move and thus we
may neglect the correlation effects in the dot. Despite this
fact, the two-particle wave function is still partly correlated
since the transferred electron interacts with charged dot and
its behavior depends on the distance from the dot due to the
Coulomb interaction. We see on Fig. 7�b�, that electron can-
not be transferred through the ring for 
B /2 independently
of the character of electrostatic interaction. It means that the
Coulomb correlation in the dot is entirely responsible for the

weakness of AB blockade for low magnetic field. Compari-
son of the results shown on Figs. 5�a� and 7�a� suggest that
the effect of Coulomb correlation on transmission probability
also depends on the effective mass of particle confined in the
dot. We demonstrate this dependence on Fig. 7�c� for elec-
tron �black crosses�, frozen electron �black empty circles�,
and electron with large effective mass �me

�=0.5 �black dots�
as well as for hole �gray �red� crosses�, frozen hole �gray
�red� empty circles�, and hole with small effective mass
�mh

�=0.067 �gray �red� dots� confined in the dot. The results
for the frozen hole and the hole with a small mass are iden-
tical. This shows that small effective mass prevents particle
from moving inside the dot regardless of the character of
electrostatic interaction. For heavier particle, i.e., electron or
hole confined in the dot with effective mass of about 0.5,
probability of electron transfer for B=39 mT is increased.
However, this growth is bigger for the attractive �8%� than
for the repulsive �2%� interaction. Notice also that the trans-
mission probability grows faster for the attractive interaction
than those for the repulsive one.

Relatively large effective mass of the heavy hole leads to
its stronger localization in the dot. This results in smaller
spacings between the lowest energy levels than those for
electron �cf. Figure 8�a� for hole and Fig. 5�c� for electron�.
For the hole confined in the dot, these spacings are compa-
rable with the average absolute value of the attractive inter-
action. For example, in the absence of magnetic field, the
two lowest excited states shown on Fig. 8�a� lie only 0.59
meV above the ground state while the absolute average value
of interaction energy between electron and hole shown on
Fig. 8�b� for closed quantum dot–quantum ring system is
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FIG. 7. �Color online� Probabilities PA �black�, PB �red�, and PC �blue� as functions of magnetic field calculated for a system: �a� with
positively charged dot and �b� with electron or hole frozen in the dot ground state �solid line for electron and dotted one for hole�. �c� Effect
of Coulomb correlation in the dot on probability of electron transfer for B= �n+ 1
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FIG. 8. �a� Energy spectra of heavy hole confined in the dot and
�b� electron-hole interaction energy in closed quantum ring–
quantum dot system.
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about 0.885 meV. Therefore, when the transferred electron
approaches the positively charged dot placed in the center of
the ring, it may quite easily excite the hole in the dot.

Figure 9 shows the total probability density and current
density distributions obtained for fully correlated electron-
heavy hole system. For B=0 and t=8 ps, when the electron
enters the ring through the left junction, the hole is attracted
by the electron and starts to move which induces the current
in the dot. At first, this current flows to the left �blue color on
Fig. 9�, but when the electron fills more or less equally the
ring �t=10 ps� which makes the potential in the dot less
perturbed, the hole reflects from the wall. Then the current
within the dot flows to the right �red color�. The hole is
excited in the dot and starts to oscillate. Its spatial oscillation
do not fade out even for long time, e.g., t=20 ps. This indi-
cates that when the electron passes through the ring, it trans-
fers part of its energy to the dot. As the energy of the electron
changes permanently, we may state that it scatters inelasti-
cally on the Coulomb potential generated by the oscillating
hole. Similar oscillations of current in the dot in the horizon-
tal direction are also visible for B=39 mT �fourth column on
Fig. 9�. We will analyze in detail this process of energy trans-
fer between the electron and the dot in next section.

Horizontal oscillations of the hole in the dot perturb the
potential in both arms of the ring. Although, the confinement
potential of the ring is perturbed, it remains symmetrical
relative to y→−y reflection. That produces identical phase
shifts in both parts of electron wave packet, i.e., in the upper
and in the lower ring arms. In other words, the weakness of
AB blockade observed on Fig. 7�a� is not a result of
dephasing15 because the phases in the upper and in the lower
parts of the electron wave packet still change coherently. In
consequence, when they meet at the second junction for B
= �n+1 /2�
B, their phase difference is no longer equal to �
due to potential perturbation. This effect was recently pre-
dicted by Chaves et al.22 They obtained very similar depen-
dence of transmission probability on magnetic field to that
shown on Fig. 7�a� for an open two-dimensional ring with
two static impurities put near both arms of the ring and
placed symmetrically to its center.

For high magnetic field, e.g., B=0.429 T �the last column
on Fig. 9�, these current oscillations become invisible and

now the current encircles the dot in the clockwise direction,
i.e., in the opposite direction to the one of the last column of
Fig. 6 when electron occupies the dot. It does not mean that
the oscillations entirely disappear, but only the diamagnetic
contribution to the current in the dot is much larger than
paramagnetic contribution. Such large diamagnetic current
was also induced by magnetic field when an electron was
confined in the dot. However, if we compare the dot currents
in the last columns of Fig. 6 and of Fig. 9 we will see that the
current is less intensive for the hole �color scales on both
figures are the same�. To explain this fact we make an as-
sumption that the densities of electron and hole in the dot do
not differ much for the same magnetic field which seems
reasonable for our case, since the confinement potential of
the dot is quite strong. With this assumption, and for fixed
value of magnetic field, the absolute value of diamagnetic
term in Eq. �20� depends only on the effective mass of par-
ticle. Since the diamagnetic current is inversely proportional
to the effective mass and the effective mass of the electron
used in calculation was about mh /me=7.5 times smaller than
effective mass of the heavy hole, the diamagnetic contribu-
tion to the current is by about mh /me larger for the electron
than that for the hole.

Probability of electron transfer depends also on the initial
conditions which we have assumed quite arbitrarily. In order
to check the sensitivity of the transmission probability to
initial conditions, we studied the time evolution of the two-
particle wave function �7� for four combinations of the dis-
tance between the initial position of electron wave packet
and the center position of the ring ��xs−xo�� and its spatial
span le. Probabilities PA, PB, and PC calculated for these new
initial parameters and for t=50 ps are shown in Figs.
10�a�–10�d�. If the transferred electron interacts with nega-
tively charged dot, these probabilities are only slightly sen-
sitive to the change of the initial conditions �see Figs. 10�a�
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FIG. 9. �Color online� The electron-hole probability density
�odd columns� and current density �even columns� for t=8, 10, 14,
20 ps. Red and blue colors indicate directions of current flow, to the
right and to the left, respectively. Intensity of colors are propor-
tional to the amplitudes of currents. The scale for the currents in the
dot was enhanced four times �square region� for B=0 and
B=39 mT.
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T. CHWIEJ AND K. KUTORASIŃSKI PHYSICAL REVIEW B 81, 165321 �2010�

165321-8



and 10�b��. For example, transmission probability increases
only about 1% when the parameter le changes from 30 to 50
nm for �xs−xo�=0.995 �m. Much larger differences in trans-
mission probability were found for system with the posi-
tively charged dot. Generally, the amplitude of AB oscilla-
tions is larger for larger le and when the electron wave packet
stays closer to the ring for t=0. For example, for B=0 and
�xs−xo�=1.7 �m, the transmission probability grows from
about 0.46 for le=30 nm to about 0.52 for le=50 nm what
gives the growth of about 6% while it is equal to about 4.7%
for �xs−xo�=0.995 �m. When the parameter le is fixed, then
the change in �xs−xo� value make less impact on the trans-
mission probability. For example, for le=30 nm, we get the
increase in transmission probability of about 3% when the
initial position of the electron wave packet is shifted by
about 0.7 �m closer to the ring whereas for le=50 nm the
increase in PC value is less distinct and is equal to about
1.1% then. On the other hand, weakness of AB blockade for
electron-hole system is independent of the initial position of
transferred electron wave packet but grows by 2% when the
value of parameter le changes from 30 nm to 50 nm for B
=39 mT.

IV. ELASTIC AND INELASTIC SCATTERING

In the previous section we showed that during the electron
transition through the ring, the particle confined in the dot
may start to move. Its spatial oscillations within the dot are
induced by the electrostatic interaction between charged par-
ticles and are due to the excitation to the higher energy states
in the dot. During the process of excitation, the transferred
electron loses a part of its kinetic energy which is gained by
the second particle. If this energy loss is permanent, i.e., the
electron does not recover it after it leaves the ring, then the
process of electron scattering on the Coulomb potential is
inelastic. Figure Fig. 11�a� shows the probabilities of occu-
pation of the low-energy quantum dot states as functions of
evolution time. This picture was obtained for B=39 mT. In
order to find the probability of occupation of the particular
dot state we have projected the two-particle wave function
�7� on that state

pi�t� = ��r1,r2,t��p̂i���r1,r2,t�� , �21�

where p̂i= �	i�	i� is the projection operator.

When electron is confined in the dot the probabilities of
occupation of the dot states do not change in time. For the
confinement potential model considered here, the electron is
always in the ground state. As it was mentioned in Sec. III B
the electrostatic interaction is too weak to excite the electron
within the dot and this is the reason we do not see any cur-
rent in the dot on Fig. 6 for B=0. Situation changes dramati-
cally if we consider the hole confined in the dot. We see on
Fig. 11�a� that after a few ps, the hole starts to be excited
since the probabilities of two the lowest excited states with
angular momentum L=1 grow with time. Contributions of
these states are identical, since their linear combination gives
the hole oscillation in the horizontal direction. Obviously, it
results from the symmetry of the confinement potential
model relative to y→−y reflection and due to the absence of
Lorentz force in the system for such small magnetic field.
Other hole states in the dot remain unoccupied. The process
of the hole excitation ends up for t=25 ps. During the next
15 ps, the hole partly de-excite and the probability of finding
it in the ground state is increased. For t�40 ps, contribu-
tions from the low-energy dot states stabilize. These changes
of probabilities of occupation of the dot states influences the
energy of the hole. We calculated the energy gained by hole,
i.e., energy transfer to the dot, from following formula:

Et�t� = 	
i=0

19

pi�t�Ei
dot − E0

dot, �22�

where Ei
dot are the eigenenergies of particle confined in the

dot. Figure 11�b� shows the time characteristics of the energy
transferred to the dot which is occupied by the hole for B
=0 and B=39 mT. We see that both cases differ qualitatively
as well as quantitatively. In the absence of magnetic field, the
energy is transferred to the dot for t�20 ps. Then the hole
energy changes only slightly and for t=50 ps it stabilizes at
about 0.08 meV. Thus, the transferred electron lose 5.6% of
its original kinetic energy. For B=39 mT the energy transfer
in the first 25 ps is twice of that observed for B=0. Next, the
hole gives back a part of the gained energy to the electron
but for t=50 ps is still much larger than in the case for B
=0. The occurrence of such a distinct difference in energy
transfer is not incidental. The magnetic field dependence of
the energy transferred to the dot occupied by the hole, de-
picted on Fig. 11�c�, indeed have minima for B=n
B, i.e.,
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for maxima of the transmission probability. On the other
hand, the maxima of the energy transfer do not appear ex-
actly for B= �n+1 /2�
B, as one may expect, but they are
shifted toward higher magnetic fields. On Fig. 11�c�, we see
that, besides the oscillatory character of magnetic field de-
pendence of energy transfer what is the signature of AB ef-
fect, the minima and maxima of energy gained by the hole lie
higher in energy when magnetic field becomes stronger. This
nonlinear effect is the signature of presence of magnetic
force in the system. Magnetic field breaks the symmetry of
the confinement potential of the ring and consequently the
Lorentz force injects larger part of the electron wave packet
to the upper arm of the ring �see density distributions on
Figs. 6 and 9 for B=0.429 T and t=8 ps�. In this case, the
magnitude of Coulomb interaction between both particles is
getting stronger. It results in a larger amount of the energy
transferred to the dot. For example, for B=0.453 T the en-
ergy gained by the hole reaches even 0.278 meV what is
19.5% of original kinetic energy of the transferred electron.

V. DISCUSSION AND CONCLUSIONS

The presence of a charged dot in the center of the ring
significantly influences the probability of electron transmis-
sion. The maxima of transmission probability observed in the
Aharonov-Bohm effect are shifted down �up� for repulsive
�attractive� interaction between transferred electron and the
charged dot �cf. Fig. 3�a� for empty dot with Figs. 5�a� and
7�a��. The reduction in transmission probability stems from
lowering the average value of wave vector in the electron
wave packet �see Fig. 3�b�� due to deceleration of its motion
when it moves toward the ring. The magnitude of this prob-
ability reduction depends in particular on the radius of the
ring and on the number of particles confined in the dot. In-
teraction should be stronger for smaller rings due to stronger
Coulomb coupling of the ring and the dot, and for multiple
charged dot. Moreover, the probability of electron transmis-
sion may also be decreased when the kinetic energy of elec-
tron is of the same order as the interaction energy. Then, the
low-energy part of the electron wave packet should be re-
flected back from repulsive Coulomb potential before it get
closer to the ring.

The single-electron transport in quantum ring depends
strongly on the relations between the magnitude of interac-
tion energy and the lowest excitation energies of particle
confined in quantum dot. When the spacings between the two
lowest excited states and the ground state in the dot are sev-
eral times larger than the interaction energy �cf. Figs. 5�c�
and 5�d��, the electron transport through the ring is blocked
for �n+1 /2�	0 flux quanta in low magnetic field �see the
magnetic field dependence of PC �blue color� on Figs. 5�a�
and 5�b��. In this case, the transferred electron is not able to
excite the second particle which stays in the ground state �the
pi do not change for repulsive interaction �red color� on Fig.
11�a�� and the Coulomb potential originated from charged
dot keeps its azimuthal symmetry. In consequence, the quan-
tum interference is not perturbed by the interaction because
the transmitted electron scatters elastically in quantum ring,
i.e., there is no permanent energy transfer between the elec-
tron and the charged dot.

The situation changes significantly when the interaction
energy becomes comparable to excitation energies. For ex-
ample, the magnetic field dependence of transmission prob-
ability obtained for attractive interaction and presented on
Fig. 7�a� reveals AB blockade weakness for �n+1 /2�	0 even
for low magnetic field. The heavy hole is excited by the
transferred electron due to their Coulomb interaction �see pi
for attractive interaction �black color� on Fig. 11�a��, and
starts to oscillate horizontally within the dot �see the currents
on Fig. 9 for B=0 and B=39 mT�. Coulomb potential origi-
nated from oscillating hole charge, breaks the azimuthal
symmetry of the confinement potential in the ring. This dy-
namical charge redistribution inside the dot perturbs the
quantum interference in the ring. Electron scatters inelasti-
cally on the oscillating Coulomb potential which changes
coherently the phase of the electron wave packet in both
arms of the ring. Finally, this leads to the suppression of AB
effect, i.e., the maximum-to-minimum ratio is decreased but
the amplitude of transmission probability does not change
much. Interestingly, the energy gained by the charge con-
fined in the dot shows strong oscillation in the magnetic field
�see Fig. 11�c��. Maxima are localized in the proximity of
�n+1 /2�	0 and are slightly shifted toward the higher mag-
netic fields.

Generally the AB oscillation period depends on: �i� the
effective radius of the ring and �ii� the vector potential. Os-
cillation of charged particle within the dot creates an addi-
tional magnetic field and vector potential. However this in-
duced magnetic field is very small,21 i.e., of the order of few
hundreds nT and therefore this effect cannot perturb signifi-
cantly the AB period. The Coulomb interaction may poten-
tially influence the effective ring radius since the electron
tends to move closer to the positively charged dot due to
attractive interaction whereas it tries to keep away from
negatively charged dot due to repulsive interaction when it
traverses the ring. However the effective ring radius can be
changed only if the interaction is strong enough to modify
the electron density along the ring radius what is possible for
very wide ring arms. For confinement potential model con-
sidered here, the interaction is too weak to make noticeable
redistribution of electron density in the ring and we did not
observe any change in AB period due to the Coulomb inter-
action.

Similar effect, i.e., suppression of AB oscillation in con-
ductance was observed in experiment of Mühle16 for two
capacitively coupled quantum rings. They obtained much
less distinct AB oscillations for outer ring than the conduc-
tance oscillation arising from AB effect for the inner ring.
The authors ascribes this effect to the imperfections of the
confinement potential of the outer ring. However it does not
explain such large amplitude of oscillation induced by the
inner ring since the charge redistribution in the inner ring
perturbs the Coulomb potential felt by electrons in the outer
ring. In our opinion besides the imperfections of the outer
ring, the difference in amplitudes of AB oscillations ob-
served in experiment results also from inelastic scattering of
the transferred electrons on the Coulomb potential. Since the
energy gaps between the ground state and the first excited
state are much smaller in the ring than in the dot, the particle
confined in the inner ring should be much more easily ex-
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cited, i.e., much energy may be transferred to the inner ring
than to the dot. In such a case, strong spatial oscillations of
particle within the inner ring may govern the motion of the
electron injected to the outer ring. Finally, this strongly in-
elastic scattering process can suppress the AB oscillation of
the outer ring rather than the amplitude of the electron trans-
mission probability.

In conclusion, the effect of Coulomb correlation on
single-electron transport in two-terminal quantum ring ca-
pacitively coupled to the charged dot was theoretically inves-
tigated. The Coulomb interaction between the transferred
electron and charged particle confined in the dot, signifi-
cantly influences the maxima of transmission probability in
Aharonov-Bohm effect. When interaction energy is compa-

rable to the lowest excitation energies in the dot then the
electron transfers part of its energy to the dot. Thus electron
scatters inelastically on the ring which finally leads to a re-
duction in Aharonov-Bohm blockade and suppression of
Aharonov-Bohm oscillation.
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